ТАМБОВСКОЕ ОБЛАСТНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ СРЕДНЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «ИНДУСТРИАЛЬНО – ПРОМЫШЛЕННЫЙ ТЕХНИКУМ»

Утверждаю: председатель ТСЖ «Центр» Д.М.Шубин «»2015г	Утверждаю Директор ТОГБОУ СПО «Индустриально – промышленный техникум
проекта по дисциплине « сооружений» для сту	к выполнению курсового Проектирование зданий и дентов специальности гация зданий и сооружений»
Протокол Ј	но на заседании методической комиссии № 2015г. ель МЦК Е.А.Зайцева

Введение

Курсовое проектирование является одной из наиболее активных форм самостоятельной работы студентов, приобретения знаний, навыков инженерных расчётов, работы с нормативными источниками и технической литературой. Работая над курсовым проектом, студент самостоятельно решает узловые вопросы, устанавливает взаимозависимость на чертеже фасада, плана и разреза, усваивает принципы расчёта наружних стен. При разработке проекта студент, как автор, отвечает за принятые в проекте решения и расчёты. В работе над проектом студент не ограничиваться сведениями, полученными на лекциях, практических занятиях и из учебников. Необходимо глубокое изучение специальной литературы, проектных материалов по строительству и ознакомление с производством на действующих предприятиях. Студент не должен ожидать от консультанта-преподавателя готовых решений. Задача преподавателя ограничивается методическим руководством ПО выбору оптимальных решений. При разработке проекта студенты должны руководствоваться документами и рекомендациями. В нормативными проекте должны использоваться новейшие достижения науки и техники.

1.Задание на курсовое проектирование

В курсовом проекте по дисциплине «ПРоектирование зданий и сооружений» студент разрабатывает на стадии проектного задания жилой или общественный дом. Проект разрабатывается по заданию, выданному преподавателем. В задании указываются наименование проекта, расписываются сроки выполнения, подписываются преподавателем и утверждается МЦК.

Студенты, несвоевременно выполнившие и не защитившие курсовую работу, к сдаче экзаменационной сессии не допускаются.

2. Состав и объём курсового проекта

Курсовой проект состоит из расчётно-пояснительной записки, объёмом 10-12 страниц машинописного текста на одной стороне листов размером

210х297 мм и графической части (2 листа формата A1 размером 594х841 мм).

Графическая часть должна отражать принятые технологические решения, изложенные в записке.

Записка должна иметь титульный лист по стандартной форме. В начале записки помещается задание на курсовое проектирование, приводится оглавление.

Графическая часть курсового проекта должна быть представлена в следущем составе:

- 1. Главный фасад здания с цветной отмывкой в масштабе 1:100, 1:200.
- 2. Планы первого и второго (типового) этажа в масштабе 1:200.
- 3. Поперечный и продольный разрезы зданий в масштабе 1:100, 1:200.
 - 4. План фундаментов (фрагмент) в масштабе 1:100, 1:200.
 - 5. План перекрытий (покрытий) в масштабе 1:100, 1:200.
 - 6. План кровли в масштабе 1:200, 1:400.
- 7. Генеральный план участка с цветной отмывкой в масштабе 1:500, 1:1000 с розой ветров, условными обозначениями и экспликацией зданий и сооружений.
- 8. Конструктивные узлы и детали здания (два, три детали) в масштабе 1:20.

Порядок выполнения курсового проекта

Курсовой проект следует выполнять в следущей последовательности:

Первый этап — изучение задания, рекомендуемой литературы, существующих проектных решений.

Второй этап – разработка вариантов эскизов объёмно-планировочного решения проекта, выбор оптимального варианта. Эскиз проекта обязательно должен быть согласован с преподавателем.

Третий этап – разработка архитектурно – конструктивных чертежей здания, выполнение теплотехнического расчёта. Проект, выполненный в тонких линиях также должен быть согласован с преподавателем.

Четвертый этап – окончательное графическое оформление чертежей. Использование программ AUTOCAD, Компас 3D.

3. Содержание расчётно-пояснительной записки

Курсовой проект – самостоятельный труд студента, представляющий собой дипломный проект в миниатюре. Работа должна иметь чёткое и логическое построение.

Расчётно-пояснительная записка должна излагаться аккуратно, грамотным литературным языком со сжатыми и чёткими формулировками, без излишнех подробностей и повторений. Не подускаются сокращения слов, кроме общепринятых. Страницы должны быть пронумерованы, таблицы и рисунки иметь нумерацию и названия.

Рекомендуется следующее содержание пояснительной записки и примерная последовательность её разделов:

- 1. Титульный лист;
- 2. Типовой бланк задания к работе (заполненный руководителем и подписанный обеими сторонами преподавателем и студентом);
 - 3. Содержание расчётно пояснительной записки;
 - 4. Перечень чертежей проекта;
 - 5. Введение;
- 6. Технико экономическое обоснование района строительства
 - -Общая характеристика участка застройки;
- -Описание принятых решений по генеральному плану;
 - -Общая характеристика здания, объёмно планировочное решение;
 - 1. Теплотехническая часть;

- -Теплотехнический расчёт наружной стены;
- 1. Архитектурно строительная часть;
- -Конструктивное решение здания с описанием несущих и ограждающих элементов;
 - -Спецификации сборных конструкций;
- 1. Технико экономические показатели объёмно планировочного решения здания;
- 2. Противопожарные мероприятия и охрана окружающей среды.
 - 3. Список использованных источников

3.1.Введение.

Вводная часть расчётно – поянительной записки должна содержать:

- Краткие сведения о задании на проектирование;
- Цели и задачи, преследуемые разработкой данного курсового проекта;
 - Современный уровень и перспективы развития строительства.
 - 3.2. Характеристика участка застройки.

Район размещения жилого или общественного здания и характеристики климатических условий (господствующее направления ветров, максимальные и минимальные температуры зимой и летом, количество осадков и др.).

3.4. Решения по генплану

При описании принятых решений по генеральному плану учащийся должен указать состав зданий и сооружений, размещающиеся на территории. Примерный перечень:

- 1. Жилые или общественные здания;
- 2. Энергетическое хозяйство для снабжения электроэнергией, теплотой (ТЭЦ, трансформаторы, котельные);
 - 3. Складское хозяйство;
- 4. Объекты административно-хозяйственного и бытового назначения (управление, столовая, проходная, здравпункт);

- 5. Транспортные коммуникации (гаражи, дороги);
- 6. Элементы благоустройства (озеленение, тротуары, скверы, киоски, павильоны и т.д.).
 - 3.5.Объёмно-планировочное решение проектируемых зданий.

Прежде чем приступить к разработке объёмно-планировочного решения здания, необходимо составить его функциональную схему, произвести функциональное зонирование. В каждой зоне размещаются помещения, близкие по своему функциональному назначению.например, здание ресторана включает следующие функциональные зоны: помещения для посетителей, производственные помещения, складские помещения, административные и бытовые помещения, технические помещения.

После выполнения функциональной схемы приступают к разработке объёмно-планировочного решения здания, его архитектурной композицией. Архитектурное решение здания во многом зависит от конфмгурации здания в плане количества этажей и формы покрытия. Выбирается композиция внутренного пространства: коридорная, ячейковая, анфиладная, зальная, павильоная, комбинированная. При проектировании необходимо стремиться к созданию оптимальной среды для человека, которая зависит от геометрических параметров помещений, создания воздушной среды, освещенности и т.д.

Габариты помещений в плане обычно соответствуют отношениям 1:1, 1:1,5; 1:2. Высота помещений не принимается меньше 2,2 м в чистоте, но обычно делается больше для необходимого количества воздуха и по архитектурным соображениям.

Для осуществления связи между помещениями в пределах одного этажа используются горизонтальные коммуникации: коридоры, галереи, соединительные переходы. Связи между этажами обеспечиваются лифтами, вертикальными коммуникациями: лестницами, пандусами, экскалаторами. При проектировании зданий с помещениями массового пользования очень важно обеспечить эвакуацию людей из здания (СНиП 21.01-97. Пожарная безопасность зданий и сооружений).

соответствии c противопожарными требованиями зданиях общественного назначения должно быть не менее двух лестниц, расположенных в лестничных клетках с ограждениями повышенной степени огнестойкости и естественным освещением. Из каждой лестничной клетки необходимо предусматривать выход непосредственно наружу или через вестибюль. В зданиях I и II степени огнестойкости главная лестница может быть открытой при условии, если помещение где она находится, отдельно от других помещений противопожарными перегородками. Здания этажностью более 5 этажей оборудуются лифтами, здания более 9 этажей – незадымляемыми лестницами.

Двери на путях эвакуации должны открываться по направлению выхода из помещения, здания. Архитектурное решение здания должно быть результатом художественного осмысления функциональной и конструктивной структуры здания, должно соответствовать природно-климатическим и градостроительным особенностям место строительства.

4. Архитектурно-конструктивные чертежи здания Генеральный план участка застройки

При выполнении чертежей генерального плана необходимо руководствоваться СПДС, ГОСТ 21.204-93. Условные и графические обозначения и изображения элементов генеральных планов показаны на рисунке 6. Чертежи выполняются в масштабе 1:500, 1:1000. Чертежи генерального плана располагают длинной стороной границы территории участка вдоль длинной стороны чертежа. Верхняя часть листа должна соответствовать северной стороне территории участка. Допускается отклонение от ориентации на север в пределах 90^{0} влево или вправо. На чертежах генеральных планов указывают:

- •Границу отвода территории;
- Проектируемые здания и сооружения;

- Существующие здания и сооружения;
- Внутри контура зданий в нижнем правом углу указывают номер здания и сооружения по экспликации, а нижнем левом углу этажность;
 - Проёмы ворот и дверей в масштабе чертежа;
 - Транспортные коммуникации, тратуары и дорожки;
 - •Площадки различного назначения;
- Элементы планировочного рельефа (откосы, подпорные стенки, лестницы и т.д.);
 - Ограждения участка (или части участка) с воротами и калитками;
 - Элементы озеленения (деревья, кустарники, цветники, газоны);
 - Малые архитектурные формы и оборудование;
 - Основные оси проектируемого здания и основные размеры;
- Указатель направления сторон света с розой ветров в левом верхнем углу листа.

Розы ветров строятся по многочисленным данным наблюдений за скоростью и направлением ветров. На графике по 8 румбам откладывают в выбранном масштабе в виде векторов значения повторяемости (%) и скорости ветра (м/сек.), соответствующие каждому румбу. Концы ветров соединяют ломанной линией. В проекте роза ветров строится для января.

Экономичность решений генерального плана определяется технико – экономическим анализом. Для этого подсчитываются следующие показатели:

- Общая площадь участка, га;
- •Площадь застройки (сумма площадей занятых зданиями и сооружениями), кв.м;
 - Площадь озеления, кв.м;
- •Площадь асфальтовых покрытий, включая площадь отмосток и мощения железобетонными плитами, кв.м;
- Коэффициент застройки отношение площади застройки к общей площади;

- Коэффициент озеленения отношение площади озеленения к общей площади;
- Коэффициент асфальтового покрытия отношение площади асфальтового покрытия к общей площади;
- Коэффициент использованной территории отношение площади застройки, асфальтовых покрытий и других покрытий к общей площади участка.

Фасад здания

Фасад проектируемого здания вычерчивается с построением, с последующей отмывкой, позволяющей выявить его архитектурно-художественные особенности. На фасаде проставляют: разбивочные оси здания, проходящие в характерных местах фасадов (например, крайние, у деформационных швов, в местах уступов в плане и перепадов высот); отметки уровня земли, верха стен, крышы, расположенных на разных уровнях элементов фасада (например, козырьков, выносных тамбуров).

Планы этажей

При выполнении планов этажей положение мнимой горизонтальной секущей плоскости разреза принимают на уровне оконных проёмов или на 1/3 высоты изображаемого этажа.

На планах этажей наносят и указывают:

- Разбивочные оси здания;
- Капитальные стены, колонны, диафрагмы жёсткости, перегородки, лестницы, оконные и дверные проёмы, встроенные шкафы, оборудование в кухнях, санузлах и душевых;
- •Вне контура плана наносят три размерные линии в следующем порядке, начиная от плана: первая с указанием простенков и проёмов, вторая расстояние между разбивочными осями, третья расстояние между крайними осями наружных стен здания. Внутри плана должны быть сквозные линии размеров с показом толщины перегородок, внутренних стен, размеров помещений;

- •Позиции (марки) элементов здания, заполнение проёмов и дверей, перемычек, лестниц и др. (заполнение дверей указывается в кружках диаметром 5 мм);
- Номера помещений, под которыми они указаны в экспликации, на планах проставляются в кружках диаметром 7-8 мм;
- •Линии разрезов с обозначением их цифрами и показом направления проектируемых плоскостей;
 - Отметки участков, расположенных на разных уровнях.

<u>Разрезы</u>

Плоскости разрезов продольных поперечных быть должны расположены так, чтобы создавалось полное представление конструктивной системе, конструктивной схеме конструктивных И особенностях здания. Плоскости разрезов, как правило, должны проходить: через оконные и дверные проёмы, между колоннами, прогонами, балками, рёбрами плит и панелей, по пустотам настилов и т.д.; вдоль лестничных маршей. Особое внимание следует уделить построению и конструированию лестниц. Курсовой проект предполагает проектирование трёх типов лестниц:

- Сборных крупноэлементных лестниц, состоящих из четырёх элементов в пределах этажа (два марша и две площадки) панельных зданий;
- Сборных крупноэлементных лестниц, состоящих из двух элементов в пределах этажа (два марша с полуплощадками) для каркасных зданий из сборных элементов;
 - Монолитных лестниц для монолитных зданий.

Выполнение чертежа разреза начинается с нанесения разбивочных осей здания, затем изображаются контуры колонн, ригелей, стен, перекрытий и других конструктивных элементов.

Внутри чертежа разреза показываются числовые отметки уровня чистого пола каждого этажа, причём отметка пола первого этажа принимается за + - 0.000 мм, отметки этажных лестничных площадок должны быть на 20 мм

выше отметки перекрытия. Вне контура чертежа, слева и справа, наносят вертикальные линии размеров и числовых отметок. На горизонтальных линиях под разрезом наносят размеры подошвы фундамента, расстояние между разбивочными осями капитальных стен и колонн на второй линии указывает общий размер между крайними разбивочными осями. Состав и толщину слоёв покрытия указывают в выносной надписи.

Узлы и детали

Разрабатываемые узлы и детали должны быть обозначены на планах и разрезах и привязаны к разбивочным осям. На узлах подписывается название и марки всех конструктивных элементов и строительных материалов, размеры , закладные детали, сварные швы и т.д. Над изображением узла указывают в кружке его порядковый номер.

Рекомендуются к детальной разработке следующие детали и узлы: сопряжение внутренних и наружных панелей, сопряжение элементов стен и перекрытий, сопряжение несущих конструкций каркаса; решение деформационных швов, детали лестниц, выхода на крышу, устройство козырьков над наружными входами, устройство межкомнатных перегородок, подвесных потолков.

Графическое оформление проекта

Курсовой проект вычерчивается с отмывкой фасада здания. Оформление чертежей следует выполнять согласно требованиям ЕСКД и ГОСТ 21.101 и ГОСТ 21.501-93 «Правила выполнения архитектурно — строительных чертежей». Листы чертежей должны иметь по периметру рамку, отстоящего от левого края бумаги на 20 мм, а от остальных краёв — на 5 мм. Чертежи обводятся линиями различной толщины: элементы здания, попавшие в сечение — сплошными толстыми линиями; элементы здания, не попавшие в сечение — сплошными линиями средней толщины; осевые — штрихпунктирными линиями; размерными — сплошными тонкими линиями; проекции невидимых элементов — пунктирными линиями средней толщины. Листы должны быть равномерно заполнены графическим материалом при

условии соблюдения необходимых разрывов между отдельными чертежами и рамкой. Элементы здания попавшие в сечение заштриховываются в соответствии с материалом, из которого они выполнены. Главные надписи на чертежах выполняются буквами высотой 5-7 мм, второстепенные надписи — высотой 3,5-5 мм. Для выполнения надписей рекомендуется использовать чертёжный шрифт типа Аи Б, наклонённые и прямые.

5. Противопожарные мероприятия и охрана окружающей среды

В этом разделе описывают мероприятия по предотвращению пожара: какие меры были приняты, какие материалы используются при строительстве зданий и сооружений.

Также разрабатываются мероприятия по охране окружающей среды: снижение вредных выбросов, снижение загрязнённости водного и воздушного бассейнов, применение оборотного водоснабжения и очистки сточных вод.

6. Оформление списка использованной литературы

В конце работы необходимо привести список использованной литературы.

Последовательность формирования библиографического списка может быть различной:

- по записи документов;
- по алфавиту фамилий авторов или названий документов;
- по хронологии издания документов и т.п.

Основные элементы библиографического описания приводятся в следующей последовательности:

- фамилия авторов;
- название книги без кавычек;
- место издания;
- название издательства;
- год издания;
- номер страницы.

7. Рекомендуемая литература

Учебная литература

- 1. Архитектура гражданских и промышленных зданий: Учебник для вузов в 5 т./под ред. В.М.Предтеченского. — М.:Стойиздат,1975.
- 2. Маклакова Т.Г., Нанасова С.М. Конструкции гражданских зданий. М.: Издательство ACB,2000.280c.
- 3. Маклакова Т.Г., Нанасова С.М., Шарашенко В.Г. Проектирование жилых и общественных зданий: Учебное пособие для вузов/под ред. Т.Г.Маклаковой. М.: Высш. шк., 1998. 400 с.
- 4. Гиясов А. Конструирование гражданских зданий: Учебное пособие. М.: Издательство ACB,2004.432c.
- 5. Нанасова С.М. Архитектурно конструктивный практикум (жилые здания). М.: Изд-во АСВ,2005.197с.
- 6. Дыховичный Ю.А. и др. Архитектурные конструкции многоэтажных зданий: Учебное пособие. М.: Архитектура-С, 2007.248с.
- 7. Шерешевский И.А. Конструирование гражданских зданий: Учебное пособие. «Юнита» Санкт-Петербургское отделение,2001.176с.

Нормативная литература

- 1. Георгиевский О.В.Единые требования по выполнению строительных чертежей. М.: Стройиздат, 2003.143с
- 2. Семёнов В.Н. Унификация и стандартизация проектной документации в строительстве. Л.: Стройиздат,1985.224с.
- 3. СНиП -3-79*. Строительная теплотехника. М.:ГПЦПП, 1998.29c.
- 4. СНиП 23-01-99*. Строительная климатология. М.: Госстрой России, 2000.67с.

- 5. СНиП 21-01-97. Пожарная безопасность зданий и сооружений. М.: Госстрой России, 1997.14c.
- 6. СНиП 2.08.02-89. Общественные здания и сооружения.— М.:ГПЦПП, 1996.42c.

Образец задания

ТАМБОВСКОЕ ОБЛАСТНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ СРЕДНЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «ИНДУСТРИАЛЬНО-ПРОМЫШЛЕННЫЙ ТЕХНИКУМ»

ЗАДАНИЕ НА КУРСОВУЮ РАБОТУ

Студент	курса	
специальность		
Тема курсовой работы		
Научный руководитель работы		_
Дата выдачи задания		_
Залание к исполнению принял		